30 research outputs found

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    Varieties of Living Things: Life at the Intersection of Lineage and Metabolism

    Full text link

    Recent morphology and sedimentary processes along the western slope of Great Bahama Bank (Bahamas)

    No full text
    Carbonate slopes and associated resedimented deposits have recently gained renewed interest because they represent volumetrically significant parts of carbonate platforms. Carbonate slopes are highly variable compositionally, architecturally and spatially due to a spectrum of sediment sources, resedimentation processes and controlling factors. Here, new high resolution acoustic data (including EM302 multi‐beam echo‐sounder and very high resolution seismic) and piston cores document highly diverse and complex morphological features along the north‐western slope of Great Bahama Bank. The recent morphology of the slope is the result of the interplay between depositional and erosive processes that vary through time and along strike. The different sedimentary processes are recorded as a Pleistocene lowstand surface, characterized by many erosional features and a Holocene sedimentary wedge along the upper to middle slope that partially covers the underlying Pleistocene surface. Sedimentary processes during the Holocene are dominated by density cascading flows, which export muddy aragonitic sediment from the platform top towards the slope. Sedimentation rates, however, vary along strike due to platform top morphology combined with the variable strength of the basinal current. Reefs and islands in the Bimini area block off‐bank sediment export, and shoals and tidal deltas from Cat Cay to the south reduce the density cascading processes. Numerous small and large slope failure scars show the instability of the steep slopes of Great Bahama Bank. Bottom currents dominate the lower slope and the basin. Striations and moats are the morphological expressions of current directions, while areas of non‐deposition document strong current and concomitant removal of off‐bank transported sediment along parts of the slope, while the Santaren Drift and the drift on the north‐western edge of Great Bahama Bank act as the depositional locus for the fine‐grained sediments transported in the current

    Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation

    No full text
    Giardia intestinalis (syn. lamblia) is one of the most widespread intestinal protozoan pathogens worldwide, causing hundreds of thousands of cases of diarrhoea each year. Giardia is a member of the diplomonads, often described as an ancient protist group whose primitive nature is suggested by the lack of typical eukaryotic organelles (for example, mitochondria, peroxisomes), the presence of a poorly developed endomembrane system and by their early branching in a number of gene phylogenies. The discovery of nuclear genes of putative mitochondrial ancestry in Giardia and the recent identification of mitochondrial remnant organelles in amitochondrial protists such as Entamoeba histolytica and Trachipleistophora hominis suggest that the eukaryotic amitochondrial state is not a primitive condition but is rather the result of reductive evolution. Using an in vitro protein reconstitution assay and specific antibodies against IscS and IscU--two mitochondrial marker proteins involved in iron-sulphur cluster biosynthesis--here we demonstrate that Giardia contains mitochondrial remnant organelles (mitosomes) bounded by double membranes that function in iron-sulphur protein maturation. Our results indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont
    corecore